26 мая 2024, воскресенье, 15:31
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Щит из наночастиц

Michael Pollak/Flickr

Международный коллектив физиков показал, что определенная форма позволяет наночастицам быть в электромагнитном смысле больше своих геометрических размеров. Обнаруженный эффект поможет в создании биологических сенсоров, материалов для солнечных батарей и элементов оптических квантовых компьютеров. Об исследовании рассказала пресс-служба Московского физико-технического института.

В диэлектрической фотонике, изучающей, как свет взаимодействует с наночастицами из различных непроводящих структур, существовал теоретический предел рассеяния света наночастицей. 

«Когда излучение лазера падает на наночастицу, она рассеивает электромагнитную энергию в виде набора четко определенных сферических волн — мультиполей. Каждый мультиполь — это канал рассеяния, по которому утекает часть рассеянной энергии. В научном сообществе широко было признано, что каждый такой канал не может нести мощность больше определенного предела», — рассказывает Адриа Канос Валеро, первый автор исследования, научный сотрудник ИТМО.

Научная группа под руководством Александра Шалина из МФТИ исследовала, как максимизировать рассеяние от кластеров наночастиц. В ходе работы ученые обнаружили, что в большинстве ситуаций рассеяние больше, чем предполагалось. Сначала исследователи подумали, что это численная ошибка. Но затем быстро поняли, что в основе лежит физический принцип. 

Оказалось, что существовавший ранее предел рассеяния хорошо определен для идеальных сценариев: когда свет рассеивается на сферической частице или на бесконечно длинном нанопроводе. В общем случае при рассеянии образуются несколько каналов-мультиполей, которые могут интерферировать, увеличивая или уменьшая мощность, которую они несут. Ученые задумались, насколько еще можно выйти за предел рассеяния.  

Ключ к ответу на этот вопрос лежал в физике связанных состояний в континууме. А именно — в особом виде интерферирующих резонансов, известных как механизм резонансов Фридриха — Винтгена. Ранее были описаны квазисостояния с сильно подавленным рассеянием. В них возникает деструктивная интерференция, когда волны от мультиполей складываются «в противофазе», подавляя друг друга. Исследователи поняли, что в их случае резонансы с увеличенным рассеянием следуют той же физике. Только интерференция получается конструктивная: когда волны складываются «в фазе», усиливая друг друга.

Суперрассеиватель взаимодействует с фотонами на гораздо большей площади, чем он сам. В результате силовые линии поля вектора Пойнтинга (фиолетовые стрелки) отклоняются, так что суперрассеиватель оставляет большую «тень», намного превышающую его диаметр. Рассеиватели, расположенные внутри этой тени (серые фигуры), «защищены» от радиационного давления (красные стрелки), индуцированного падающим лучом. Источник: Nature Communications

Ученые построили модель и рассчитали форму наночастиц, при которых можно «нарушить» предел и добиться сверхрассеяния. Затем экспериментаторы по рецепту теоретиков изготовили подходящие керамические частицы и проверили предсказания с помощью микроволновой спектроскопии.

«Это прежде всего фундаментальный эффект. Некоторые коллеги, которым я кратко рассказывал о наших результатах, не верили: говорили, что так не может быть. Теперь они могут почитать статью и убедиться, что может», — рассказывает Александр Шалин, руководитель исследования, ведущий научный сотрудник лаборатории контролируемых оптических структур МФТИ.

Помимо фундаментальной важности, у сверхрассеяния есть и потенциальные практические приложения. Так как этот эффект очень чувствительный, на его основе можно будет разрабатывать биосенсоры и материалы для солнечных батарей, а также оптические наноантенны для квантовых и оптических компьютеров. 

«Одно из потенциальных практических применений, которое хорошо иллюстрирует обнаруженный эффект, — это создание некоторого щита от электромагнитных сил и излучения. На картинке видно, что свет частицу огибает, а тень получается значительно больше самой частицы. Получается, что за ней можно "спрятать" что-то крупнее, чем сама частица», — поясняет Александр Шалин.

Исследование опубликовано в журнале Nature Communications.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.