20 мая 2024, понедельник, 20:50
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Необычные свойства меланинов

Меланин — пигмент, который придает коже, волосам и глазам человека цвет
Меланин — пигмент, который придает коже, волосам и глазам человека цвет
PxHere

Ученые из Московского физико-технического института с коллегами из Объединенного института ядерных исследований (Дубна) и Университета Суонси впервые наблюдали эффект совместного связывания (pancake bonding) в биологическом материале — пигменте эумеланине. Об открытии сообщила пресс-служба МФТИ.

Со школьной скамьи нам известно, что в природе существует три основных типа биологических полимеров: нуклеиновые кислоты, белки и полисахариды. Многие наверняка ожидали увидеть в этом списке липиды, но в классическом смысле полимерами жиры не являются, хотя они, как и перечисленные три типа полимеров, образуют сложные надмолекулярные (или, как любят говорить химики, супрамолекулярные) структуры: мембраны, мицеллы, везикулы и т. д.

Возможно, это прозвучит неожиданно, но существует еще один класс биологических полимеров, распространенный среди всех царств живых систем, — это меланины. Они представлены во всех типах организмов, за исключением вирусов. Меланин — пигмент, который придает коже, волосам и глазам человека цвет. Больше всего у нас эумеланинов и феомеланинов. Первые отвечают за коричневые и черные оттенки, а вторые — за красные и желтые. Это высокомолекулярные соединения, в которых основными звеньями цепи являются хиноны и гидрохиноны либо их таутомеры. Причем эти звенья соединены пи-сопряженными связями, которые знакомы большинству по гексагональной молекуле бензола.

В результате возникает ряд важных следствий, определяющих свойства меланинов и повышенный интерес к этим материалам со стороны физиков и материаловедов. Во-первых, меланины — полисопряженные полимеры. Это роднит их с так называемыми органическими металлами и полупроводниками, то есть неметаллическими материалами, которые, однако, при определенных условиях способны демонстрировать электрическую проводимость на уровне металлов.

Во-вторых, меланины являются отличными матрицами для стабилизации неспаренных электронов (радикалов). В физиологических условиях концентрация радикалов в меланинах может достигать колоссальных значений, невозможных ни для каких других биологических материалов, — порядка 1018–1019 штук на грамм вещества. Это, с одной стороны, роднит их с искусственными органическими магнитными материалами, а с другой — делает важными естественными антиоксидантами.

Наконец, в ультрафиолетовом и видимом диапазоне длин волн меланины обладают сплошным, лишенным особенностей спектром поглощения. Это окрашивает их в привычный черно-коричневый цвет загара, позволяет эффективно поглощать опасные коротковолновые фотоны, способные необратимо повреждать сложные биологические молекулы, и конвертировать их в относительно безопасное тепловое излучение. На этом основана одна из главных физиологических функций эумеланина — защита организма от повреждающего действия солнечных лучей.

Такой набор свойств заинтересовал физиков довольно давно, задолго до начала бума органических полупроводников. На меланине было изготовлено первое искусственное устройство органической электроники — бистабильный переключатель МакГиннесса 1973 года, который ныне демонстрируется в Смитсоновском институте.

Несмотря на столь многолетнюю историю исследований, задач в меланиновой физике, химии и физиологии осталось много. По сравнению с классическими объектами физики твердого тела, меланин сложен. Базовая причина этой сложности — существенно аморфная структура данного материала, невозможность кристаллизации, сочетающаяся с нестабильностью состава мономеров. Это делает результаты классических структурных исследований с помощью рентгеновской дифракции малоинформативными, а моделирование свойств меланина методами квантовой химии — весьма трудной и в известной мере неблагодарной задачей. Поэтому подвижки в понимании связи структуры и свойств этих материалов происходят довольно редко и оказываются на вес золота. Несмотря на все трудности работы, знания об этом веществе крайне востребованны в медицине, «зеленом» материаловедении, биоэлектронике и электроцевтике.

В последние десять лет на меланине проведен широкий спектр исследований транспортных и релаксационных свойств, говорящих о том, что вода изменяет химический состав материала, увеличивая концентрацию мономеров, содержащих неспаренные электроны. В лаборатории терагерцовой спектроскопии Центра фотоники и двумерных материалов МФТИ исследовали влияние концентрации воды на структуру различных меланинов с помощью рентгеновского рассеяния. В известных кристаллических органических системах аналогичный рост концентрации свободных радикалов приводит к принципиальным изменениям свойств материалов, включающим возникновение магнитного упорядочения и повышение электронной/дырочной проводимости. Ключевое взаимодействие, которое приводит к таким изменениям, в англоязычной литературе называется pancake bonding. На структурном уровне оно выражается в значительном уменьшении расстояния между слоями отдельных молекул в кристаллах. Возникает сильная делокализация электронной и спиновой плотности.

«Ученые МФТИ увидели, что аналогичный процесс в меланине, вызванный ростом концентрации радикалов под действием воды, приводит к уменьшению расстояния между слоями мономеров до значений менее 3,2 ангстрем. Для ряда синтетических органических кристаллов это приводило, например, к возникновению антиферромагнитного упорядочения», — рассказывает ведущий научный сотрудник лаборатории терагерцовой спектроскопии МФТИ Константин Мотовилов.

В планах группы в ближайший год — проверить с помощью измерений магнитных свойств увлажненного меланина данную возможность. Если предсказанный эффект подтвердится, можно будет говорить о том, что живые системы способны синтезировать макроскопические органические магнитоупорядоченные фазы. Вплоть до настоящего времени такое наблюдалось только в новейших искусственных материалах.

Работа выполнена при поддержке Российского научного фонда и опубликована в журнале Physical Chemistry Chemical Physics.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.