19 мая 2024, воскресенье, 01:40
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Металлическая пена на принтере

3D-принтер для лазерной наплавки металла
3D-принтер для лазерной наплавки металла
Олег Дубинин/Сколтех

Ученые из Сколтеха нашли способ печатать на 3D-принтере металлическую пену — особую форму металла, пригодную, например, для очистки нефти и газа от примесей, отвода тепла от горячих элементов кондиционера, гашения вибраций и звукоизоляции в автомобилях, самолетах и другом транспорте или на производстве. Новый подход к производству пенометалла экономит сырье, электроэнергию и время и снижает расходы на производство. Кроме того, расширяются возможности тонкой настройки свойств материала: можно варьировать размер и плотность расположения пор от одного участка детали к другому. О работе рассказала пресс-служба Сколтеха.

Пенометалл — класс материалов, внешне похожих на жесткую губку из металла. Они легкие, пористые и обладают большой прочностью на сжатие. Применяется металлическая пена в фильтрах для удаления примесей из нефти и газа. Она также хорошо подходит для звуко- и виброизоляции, например, шумного отсека с корабельным двигателем. Кроме того, из-за наличия пор у пены высок показатель удельной площади поверхности на единицу объема, поэтому она может выступать в роли своего рода хайтек-аналога ребер охлаждения — так называются пластины вроде тех, что торчат из радиатора отопления и эффективно отдают тепло в окружающее пространство.

Есть два традиционных подхода к изготовлению пенометалла: горячее прессование порошка и вспенивание расплава металла инертным газом. Научная группа из Сколтеха под руководством старшего преподавателя Станислава Евлашина предложила альтернативную методику, которая обещает сделать процесс производства более эффективным и управляемым с точки зрения тонкого контроля свойств материала.

Первый автор исследования, старший инженер Олег Дубинин из Центра технологий материалов Сколтеха, так объяснил основную суть метода прямой печати пенометалла: «Мы адаптировали к изготовлению пенометалла лазерную наплавку — распространенный метод 3D-печати, который изначально рассчитан на изготовление монолитных деталей либо наплавление покрытий. Мы уже показали, что такой подход применим к титану, алюминию и алюминиевой бронзе, но будут эксперименты и с другими металлами и сплавами. При этом не требуется никаких модификаций оборудования: всего лишь скорректировав ряд параметров программного обеспечения, мы расширяем возможности 3D-печати».

Печать происходит следующим образом: металлический порошок поступает в потоке инертного газа в зону действия лазера, который нагревает поверхностный слой частиц, сплавляя их друг с другом и с подложкой — так и получается металлическая пена. Основные отличия от обычной лазерной наплавки металла — значительно более низкая мощность лазера и точно откалиброванная скорость подачи порошка. Правильно подобранное сочетание этих параметров позволяет печатать изделия из пенометалла на обычной установке для лазерной наплавки. По словам авторов исследования, прямая печать имеет ряд преимуществ перед традиционными подходами к изготовлению металлической пены в части эффективности и себестоимости.

Используемые сейчас методы включают две стадии производства. Первый вариант предполагает изготовление пористой металлической заготовки, которой затем придают нужную геометрию путем механической обработки. Второй вариант — изготовить форму и затем выполнить с ее помощью отливку или прессование изделия. Так или иначе, наличие подготовительной стадии производства повышает расход сырья и времени. А при использовании прямой печати не нужна оснастка для пресс-формы, не остается металлической стружки от постобработки и в целом не требуется оборудования, помимо 3D-принтера, что тоже сокращает себестоимость продукта. Показатель энергоэффективности тоже высок, поскольку используется маломощный лазер. Если сравнивать со стандартной лазерной наплавкой цельнометаллического изделия, там мощность излучения выше примерно в 20 раз.

Еще одно преимущество связано с долей открытых пор в изделии. 3D-печать позволяет довести этот показатель почти до 100 %, что важно для фильтрации и отведения тепла. Открытые поры создают сеть каналов, сообщающихся с внешним миром. В закрытые поры проходящий через пену поток жидкости или газа не попадает, поэтому они бесполезны для фильтра. И рассеиванию тепловой энергии они тоже не способствуют.

В отличие от традиционных методов, которыми производится пена с однородной пористостью, прямая печать дает возможность филигранно контролировать размер и плотность расположения пор в каждой точке изделия. Допустим, можно сделать такой фильтр, размер пор в котором постепенно уменьшается по мере продвижения от точки входа к точке выхода, разделив его таким образом на зону грубой и зону глубокой очистки.

Подобным образом можно варьировать даже химический состав пены. Скажем, если она используется для отведения тепла, то вблизи места контакта с очень горячей деталью целесообразна высокая доля жаропрочного металла, например титана. По мере отдаления от источника тепла, состав изделия может смещаться в сторону большего содержания, предположим, алюминия. Высокая теплопроводность этого металла поможет быстрее сбрасывать тепловую энергию в окружающую среду.

Методика описана в статье, опубликованной в Journal of Porous Materials.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.