9 мая 2024, четверг, 03:53
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

07 октября 2023, 18:00

О происхождении времени: последняя теория Стивена Хокинга

О происхождении времени: последняя теория Стивена Хокинга
О происхождении времени: последняя теория Стивена Хокинга

Издательство «Бомбора» представляет книгу бельгийского космолога Томаса Хертога «О происхождении времени: последняя теория Стивена Хокинга» (перевод К. Л. Масленникова).

«Вселенная, которую мы наблюдаем, выглядит спроектированной. Почему Вселенная такая, какая она есть? И почему в ней есть мы?» Последние 20 лет жизни Хокинг вместе с соратником Томасом Хертогом разрабатывал новую теорию космоса, способную объяснить, как возникла жизнь.

Погрузившись в квантовую голографию и отправившись далеко в прошлое, ученые обнаружили более глубокий уровень эволюции, на котором законы физики преобразуются и упрощаются до тех пор, пока частицы, силы и даже само время не исчезают. Это открытие привело к революционному выводу: физические законы — не константа: они рождаются и развиваются одновременно со Вселенной, которой управляют.

Предлагаем прочитать фрагмент книги, в котором описывается становление теории Большого взрыва.

В первоначальном варианте 1927 года расширяющаяся Вселенная Леметра не имела начала. Он предполагал тогда, что Вселенная медленно и постепенно эволюционировала от состояния, близкого к статическому, которое она имела в бесконечно далеком прошлом. Но к 1929 году Леметр понял, что и в далеком прошлом этот сценарий очень напоминал эйнштейновскую иголку, балансирующую на острие, — и отбросил его в пользу другого, в котором у Вселенной было реальное начало. Для Леметра факт расширения Вселенной означал, что она должна была иметь прошлое, непредставимо отличающееся от ее настоящего. «Мы нуждаемся в полном пересмотре нашей космогонии, — настаивал он, — в теории космической эволюции, подобной фейерверку».

Здесь Леметр зашел гораздо дальше, чем могла его завести даже теория Эйнштейна. Он увидел исток Вселенной в сверхтяжелом «первичном атоме», ослепительный распад которого привел к появлению того бескрайнего космоса, что мы сегодня видим. «Стоя на остывающем куске шлака, мы видим медленное угасание солнц и пытаемся восстановить в воображении исчезающий блеск рождения миров», — писал он в своей монографии «Гипотеза первичного атома» (L’Hypothèse de l’Atome Primitif). В поисках ископаемых остатков взрывного рождения Вселенной Леметр заинтересовался космическими лучами, в которых он видел нечто вроде ожидающих расшифровки иероглифов, хранящих рассеянную в пространстве информацию о древнем первичном огненном шаре. Уже в конце своей деятельности для более точных вычислений траекторий космических лучей Леметр купил на Всемирной выставке World Expo 1958 года в Брюсселе одну из первых электронных вычислительных машин, Burroughs E101. С помощью своих студентов он установил ее на чердаке физического факультета университета в Лёвене, основав тем самым первый в истории университетский вычислительный центр.

Однако хотя идея расширяющейся Вселенной получила широкое признание еще в начале 1930-х, любые разговоры о том, что Вселенная имела начало, встречались с огромным скепсисом. «Для меня представление о том, что нынешнее устройство Природы имело начало, выглядит просто отталкивающе, — заявлял Эддингтон. — Как ученый, я просто не верю, что Вселенная началась со взрыва. Как будто нечто неизвестное нам выделывает неизвестно что».

Эйнштейн тоже сперва отвергал идею начала мира. О точке нулевого отсчета времени в модели расширяющихся вселенных Леметра он думал так же, как и о сингулярности в центре шварцшильдовской сферической черной дыры, — как о странной особенности идеально симметричного и однородного расширения этих вселенных. Поскольку реальная Вселенная вовсе не идеально однородна, при попытке обратить процесс расширения вспять воспроизвести те же конфигурации не удастся, рассуждал он; значит, начало надо заменить циклами сжатия и расширения. В философском смысле это казалось ему гораздо более приемлемым. В 1957 году Леметр вспоминал об их беседе так: «Я снова встретился с Эйнштейном в Калифорнии — в Атенеуме, в кампусе Пасадены. Говоря о своих сомнениях в отношении неизбежности — при определенных условиях — начала Вселенной, Эйнштейн предложил упрощенную модель несферической Вселенной, для которой я без труда рассчитал тензор энергии и показал, что лазейка, с помощью которой Эйнштейн надеялся [избежать необходимости начала], не работает». По всей видимости, Леметр разделял чувства Эйнштейна по поводу неизбежности начала мира, отметив, что «с эстетической точки зрения эта идея неудачна. Представление о Вселенной, которая раз за разом расширяется и сокращается, обладает неотразимым поэтическим очарованием, заставляя вспомнить о легендарной птице Феникс».

Но Вселенная такова, какова она есть. Невзирая на философские и эстетические предпочтения своих первопроходцев, релятивистская космология недвусмысленно указывала — и упорно продолжает это делать, — что начало у Вселенной все же было. Не будем, однако же, забывать, что нулевой отсчет времени в космологии Леметра, «день, у которого не было “вчера”», вновь образует в общей теории относительности сингулярность, в которой кривизна пространства-времени становится бесконечной, и вследствие этого уравнение Эйнштейна перестает работать. Так что забавным образом Большой взрыв для релятивистской космологии остается в той же степени краеугольным камнем, в какой и ахиллесовой пятой — неизбежностью, лежащей за пределами понимания.

Такое положение вещей вызывает глубочайшее смущение. Если само понятие времени обрело смысл с Большим взрывом, тогда все вопросы о том, что было до этого момента, оказываются лишенными смысла. Даже умозрительные предположения о том, что вызвало Большой взрыв, тоже выглядят неуместными — ведь причина должна предшествовать следствию, а значит, сама постановка вопроса предполагает некоторое представление о времени. Этот видимый крах основной идеи причинности в точке возникновения времени и составлял суть выступлений Эддингтона и Эйнштейна против Леметра.

Их неприятие представления о реальном начале Вселенной коренилось в ощущении, что такое начало требовало вмешательства в естественный ход эволюции какого-то сверхъестественного посредника. И это ощущение становилось еще острее по мере того, как за последнее столетие появлялось все больше и больше доказательств происхождения Вселенной путем, поразительно способствующим эволюции жизни. Так что, оглядываясь назад, мы можем понять и простить одолевавшие Эддингтона и Эйнштейна подозрения!

Взгляды Эйнштейна и Эддингтона на проблемы, связанные с идеей начала Вселенной, уходили корнями в старый детерминизм, восходящий еще к Ньютону, детерминизм, с которым согласуется и классическая теория общей относительности Эйнштейна. В этой схеме любое начало требует начальных условий, имеющих те же степени свободы, что и Вселенная, которая из этих условий развивается. Вселенная, которая в ходе своей эволюции достигает некоторой степени сложности, требует, чтобы в нее были заложены начальные условия того же уровня сложности. А Вселенная, которая оказывается приспособленной для зарождения жизни, требует начальных условий, в которых закодирован тот же уровень потенциальной благоприятности для жизни. Все выглядит так, как будто для «запуска» нашей тонко настроенной биофильной Вселенной потребовался некий «акт божественного творения».

Но Леметр сделал гигантский шаг вперед от детерминизма. Он предложил разорвать цепь причин и следствий, приняв квантовую точку зрения на происхождение Вселенной. Свою позицию он изложил в, возможно, самом визионерском из своих текстов, «Начало мира с точки зрения квантовой теории», опубликованном в журнале Nature в мае 1931 года. Исполненное космической поэзии письмо Леметра — один из самых дерзких научных текстов XX столетия. В нем всего лишь 457 слов, но его можно считать настоящей хартией космологии Большого взрыва. В своем письме Леметр утверждает — насколько мне известно, впервые, — что революции, произведенные теорией относительности и квантовой механикой глубоко взаимосвязаны, что изучение начала Вселенной должно быть частью науки, что оно управлялось физическими законами, которые мы можем установить, но что эти гипотетические законы потребуют объединения квантовой теории с теорией гравитации. Мы должны сплавить воедино теорию относительности и квантовую теорию, писал Леметр, так как первая предполагает возникновение Большого взрыва там, где вторая становится критически важной. Именно это объединение, как провидел Леметр, обеспечит настолько мощный и глубокий синтез знаний, что он введет вопрос о происхождении Вселенной в рамки естественных наук. Эти мысли оказались провидческими: сегодня физики постоянно говорят, что Большой взрыв был высшей формой квантового эксперимента.

Квантовая теория пропитывает физику неизбежным элементом неопределенности и «размытости». Леметр предполагал, что в экстремальных условиях самых ранних стадий Вселенной даже пространство и время сделались бы неопределенно-размытыми. «Понятия пространства и времени в самом начале вообще не имели бы какого-либо значения, — писал он в своем “манифесте Большого взрыва”. — Пространство и время начали бы иметь какой-то реальный смысл только, когда исходный “квант” разделился бы на достаточное количество настоящих квантов». И загадочно добавлял: «Если это предположение верно, то начало мира случилось чуть раньше начала пространства и времени».

Но как же квантовый индетерминизм мог бы разрешить загадку причинности, которую ставит перед нами Большой взрыв? Леметр имел в виду, что сложная Вселенная могла появиться из простого первичного атома вследствие случайных квантовых скачков. И если бы оказалось, что сложность современной Вселенной есть результат бесчисленных «замороженных случайностей» в ее эмбриональном развитии, а не следует с необходимостью из идеально выверенных исходных условий, заложенных в самом начале, — разве это не могло бы сделать всю идею начала Вселенной более приемлемой?

Размышляя над потенциальными следствиями сценария квантового происхождения Вселенной, Леметр заканчивал свое письмо в Nature такими словами: «Ясно, что первоначальный квант не мог содержать в себе весь последующий ход эволюции. Нет никакой необходимости в том, чтобы история мира была записана в первом кванте, как песенка на диске фонографа... Напротив, из одного и того же начала могли бы развиться очень разные вселенные».

Благодаря тому, что идея квантового происхождения казалась способной смягчить остроту проблемы происхождения времени, Леметр стал рассматривать эту идею как центральную опору его новой космологии, хотя он так и не записал ни единого уравнения первичного атома в обоснование своего дерзновенного видения. Интуитивная картина начала Вселенной, которую Леметр нарисовал в своем «манифесте Большого взрыва» отличается крайней простотой. В его представлении первичный атом был чем-то вроде абстрактного, неделимого, девственного космического яйца, что заставляет меня вспомнить «Начало мира», произведение румынского скульптора Константина Бранкузи.

Британский квантовый физик Поль Дирак, один из первых сторонников Леметра и его гипотезы первичного атома, пошел еще дальше и предположил, что квантовые скачки в ранней Вселенной могли полностью заменить собой необходимость в каких-либо начальных условиях. Могло ли случиться, что в момент квантового начала мира причинность исчезает, что тайна «первопричины» в квантовом мире — в нашем мире — просто испаряется?

Поль Дирак прибыл в Кембридж в качестве студента в 1923 году, в том же году, что и Леметр, и тоже надеялся изучать теорию относительности у Эддингтона. Но ему было суждено пойти по иному пути. Этот путь привел его в квантовую теорию частиц, где он достиг непревзойденной никем глубины понимания. Дирак вывел получившее его имя уравнение, объединившее эйнштейновскую частную теорию относительности с квантовой механикой, и предсказал существование антивещества, что принесло ему в 1933 году Нобелевскую премию. Впоследствии он стал даже пятнадцатым по счету Лукасовским профессором математики в Кембридже. При этом Дирак был весьма необычной личностью: он отличался известной всем застенчивостью и молчаливостью, и, как говорили некоторые его коллеги, иногда казался поистине невидимкой. Как-то раз в конце 1970-х Стивен и его жена Джейн субботним вечером пригласили Дирака с женой к чаю. Дон Пэйдж, в то время ассистент Стивена, живший у него и помогавший ему в быту, тоже задержался за столом, чтобы послушать, о чем будут говорить между собой два титана физики XX века. Но ни один из них так и не произнес ни слова.

В архиве Дирака в Таллахасси, штат Флорида, хранится прелестная карандашная зарисовка: портрет Леметра, набросанный одним из слушателей во время лекции Леметра в Клубе Капицы в Кембридже в 1930 году (см. рис.15). Под наброском написано: «Но я не верю в Божий Перст, всколыхнувший эфир». Согласно воспоминаниям Дирака, которые он записал на сопровождающем этот рисунок листке в 1971 году, «во время лекции Леметра было много споров о роли квантовой неопределенности».

 

Рис. 15 (а). Этот набросок сделал слушатель доклада, который Жорж Леметр прочел в Кембриджском университете в 1930 году. Надпись внизу свидетельствует, что Леметр не видел никаких причин для участия Бога в Большом взрыве. Он считал, что гипотеза первичного атома — чисто научный вопрос, основанный на физической теории, и решаться он должен в конечном счете астрономическими наблюдениями. Через сорок лет Поль Дирак сделал к этому наброску приписку, приводимую здесь же.

 

Рис. 15 (b). «Году в 1930-м аббат Леметр приехал в Кембридж и прочел лекцию в Клубе Капицы. Было много споров о проблеме неопределенности в квантовой механике. Леметр упорно твердил, что не верит в то, что Бог непосредственно вмешивается в события в мире атомов.

Во время дискуссии кто-то из присутствующих сделал на память этот набросок. Не помню, кто это был. Леметр на рисунке получился довольно похоже. П. А. М. Дирак. 1 сентября 1971».

И Дирак, и Леметр видели в квантовой механике способ распутать причинный узел, созданный детерминистской перспективой начала Вселенной, — и сделать это, прослеживая корни сложности, приобретенной Вселенной в ходе ее существования, до случайных квантовых скачков на заре ее образования. Эти скачки в каком-то смысле сделали космологическую эволюцию истинно творческим процессом.

Подводя итоги бурного десятилетия открытий, Дирак снова упомянул леметровскую гипотезу первичного атома в 1939 году, в своей лекции при получении премии Вальтера Скотта в Королевском обществе в Эдинбурге: «Новая космология [связанная с расширением Вселенной] в философском смысле, вероятно, окажется даже более революционной, чем теория относительности или квантовая теория, хотя сейчас мы вряд ли можем осознать все таящиеся в ней последствия». Пройдет семьдесят лет, и мы со Стивеном в нашем научном странствии и вправду столкнемся с некоторыми из этих философских последствий.

В то время, однако, наблюдений, которые могли бы подтвердить гипотезу первичного атома или чего-то вроде него, выполнить не удавалось. После взлета в начале 1930-х космология постепенно сделалась тихой научной заводью: наблюдений в этой области почти не было, зато грандиозных умозрительных построений — хоть отбавляй. Ученые-космологи приобрели сомнительную репутацию тех, кто «часто ошибается, но никогда не сомневается».

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.