29 мая 2024, среда, 01:23
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Мобилизация организма

Издательства «КоЛибри» и «Азбука-Аттикус» представляют книгу профессора космической медицины Ханнса-Кристиана Гунга «Мобилизация организма. На что способно наше тело в экстремальных условиях» (перевод Александра Анваера).

Как организм реагирует на месяцы, проведенные в невесомости, на арктическую зиму, на высокогорный воздух с низким содержанием кислорода, на сильную жару или нехватку жидкости? Что происходит от длительной работы под землей или в условиях микрогравитации и почему температура тела, кровяное давление и частота пульса меняются в таких условиях сравнительно минимально? Специалист по космической медицине и физиологии Ханнс-Кристиан Гунга рассказывает, что происходит с человеческим телом при экстремальных физических и психологических нагрузках. По его авторитетному мнению, чтобы лучше понять «неизвестную сущность» человека, необходим целостный подход, который охватывает многие области знаний, от физиологии и психологии до геологии, астрономии, палеонтологии, и который при этом всегда ставит в центр внимания тело человека.

Предлагаем прочитать фрагмент книги.

 

В физиологической литературе данные о том, как обозначать высотность, немногочисленны и разнятся. В целом считается, что высоты до 2500 м следует считать средними, от 2500 до 5300 м — большими, а выше 5300 м — экстремальными. Согласно International Standard Atmosphere (Международная стандартная атмосфера, МСА), давление воздуха на уровне моря составляет 1013 миллибар, что соответствует одной атмосфере. Что касается химического состава земной атмосферы, то, как мы видели в первой главе, наша Земля произвела в ней некоторые существенные изменения. Сегодня атмосфера состоит преимущественно из азота (около 78 %) и кислорода (около 21 %); небольшой остаток делят между собой аргон (0,9 %) и двуокись углерода (0,3 %). Такой состав остается относительно постоянным до высоты 100 км. Эту область называют термосферой, поскольку здесь в пограничной зоне, переходной к космическому пространству, температура воздуха резко повышается. Его плотность, давление и влажность при приближении к космосу, напротив, экспоненциально уменьшаются.

Воздушное пространство до высоты 12 км называют тропосферой, затем следует стратосфера, где располагается столь важный для нас озоновый слой, который защищает нас от интенсивного ультрафиолетового излучения. Далее стратосфера примыкает к мезосфере, которая простирается до высоты 80 км. Так как по мере увеличения высоты в атмосфере остается меньше газов, способных поглощать ультрафиолетовое излучение, значения его возрастают в тропосфере приблизительно на 7 % с каждой 1000 м высоты.

Натан Цунц первым понял, что для различных высотных регионов всего мира и для каждой части специфических локальных высот надо учитывать климатические поправочные факторы, чтобы определять фактические барометрические условия из-за общих физических изменений, таких как температура. Цунц включил такие параметры, как среднее значение высоты местоположения, средняя температура и высота столба воздуха, а также разность давления в долине и на высоте, в свою знаменитую барометрическую формулу. Когда речь идет о том, может ли человек забраться на вершину Эвереста (8848 м) без дополнительного источника кислорода, незначительные поправки величины международной стандартной атмосферы, вычисляемые по формуле, предложенной Цунцем, приобретают решающее значение. Согласно МСА, на вершине Эвереста следует ожидать давление воздуха 236 мм рт. ст., а по формуле Цунца — 269 мм рт. ст. Эта разница может показаться незначительной, но на самом деле она позволяет уменьшить эффективное значение высоты Эвереста на 400 м; только благодаря этому феномену Мессмеру и Хабелеру удалось добраться до вершины без использования дополнительных источников кислорода. Если бы гора Эверест находилась на Северном или Южном полюсе, ее невозможно было бы покорить без дополнительного кислорода, так как в этих областях парциальное давление кислорода заметно ниже. В зависимости от географического положения меняется относительное атмосферное давление, а с ним и парциальное давление газов, входящих в состав атмосферы.

Согласно определению, доля газа в общем атмосферном давлении есть его парциальное давление, и именно это становится решающим с точки зрения физиологии и медицины. Почему? Потому что в этом случае речь идет о реальном числе молекул кислорода во вдыхаемом воздухе. Вот пример: я беру куб, содержащий 1000 л воздуха на высоте уровня моря при давлении в одну атмосферу. В этом кубе будет содержаться 780 л азота (78 %), 210 л кислорода (21 %) и 10 л остальных газов (1 %). Теперь уменьшим вдвое атмосферное давление, что приблизительно соответствует высоте 5500 м; смесь будет содержать те же 78 % азота, 21 % кислорода и 1 % остальных газов, но число молекул соответствующих газов окажется в два раза меньше и, таким образом, в нашем кубе воздуха будет содержаться фактически 390 литров азота, 105 л кислорода и 5 л других газов. В процентном соотношении состав атмосферы остается прежним и на большой высоте, но число доступных газовых молекул изменяется. На высоте 5500 м я вдыхаю только половину молекул кислорода. Этот недостаток кислорода в крови, снижая насыщение гемоглобина кислородом, подает организму сигнал: пора принимать контрмеры.

На уровне моря насыщение гемоглобина кислородом колеблется в норме от 95 до 100 %. На высоте 5000 м — падает до 75 %. Теперь даже при незначительной физической нагрузке человек начинает испытывать нехватку воздуха. Дыхание становится чаще и глубже. Учащается пульс, чтобы компенсировать недостаточную доставку кислорода к тканям. Если человек находится на высоте 5000 м в течение нескольких дней, показатели насыщения гемоглобина кислородом немного улучшаются и могут достигнуть 85 %. Учащенное и более глубокое дыхание приводит к уменьшению содержания углекислого газа в легочных альвеолах и в крови. Это приводит к сдвигу кислотно-щелочного баланса, к изменению pH крови. Это среди прочего оказывает влияние на связывание кислорода гемоглобином эритроцитов. Отчего это происходит? И что мне следует понимать под кислотно-щелочным балансом?

О «закислении» организма, о благодетельном «ощелачивающем» лечении и «раздельном питании», которые влияют на кислотно-щелочной баланс, люди слышат из каждого утюга, но преимущественно читают в бульварной прессе. Первое — и в этом нет никаких сомнений: уравновешенный кислотно-щелочной баланс имеет важнейшее значение для нормального функционирования организма. Этот баланс влияет на функции белков, на функции клеток и проницаемость клеточных мембран. Таким образом, кислотно-щелочной баланс непосредственно вмешивается в течение физиологических процессов обмена веществ. Здесь в первую очередь речь идет о регуляции концентрации ионов водорода (H+) в организме, которые возникают, например, при расщеплении белковых молекул. Мера концентрации ионов водорода — показатель, называемый pH. Он может варьироваться в пределах от 1 до 14. При значении pH, равном 7, кислоты и щелочи находятся в водном растворе в равных количествах. При значениях pH, меньших 7, в растворе преобладают кислоты, а при значениях pH, больших 7, преобладают щелочи. Для наглядности и облегчения понимания можно привести пару примеров известных кислот и оснований. Например, соляная кислота в желудке имеет значение pH ниже единицы, лимонная кислота — 2,8, кислая капуста или вино имеют pH 4, кофе — 5, дистиллированная вода в системе охлаждения автомобильного двигателя имеет pH ровно 7; pH крови составляет 7,35–7,45, а pH кишечного сока достигает 8. В межклеточном пространстве или в крови, в так называемом внеклеточном пространстве, среднее значение pH равно 7,4. Таким образом, в организме преобладает щелочная среда.

С химической точки зрения кислоты — это вещества, которые в водном растворе выделяют ионы водорода (H+). Одна из важнейших кислот нашего организма — угольная кислота (H2CO3), которая образуется из двуокиси углерода (CO2) и воды (H2O). Основания (щелочи) — это химические соединения, которые присоединяют ионы водорода, и одним из важнейших оснований в человеческом организме можно назвать бикарбонат (HCO3–). Так как ионы водорода отличаются высокой реакционной способностью, даже небольшие изменения их концентрации приводят к значительным изменениям физиологических функций организма; в связи с этим значения pH постоянно отслеживаются регуляторными системами и поддерживаются в очень узких пределах. Концентрация свободных ионов водорода во внеклеточной жидкости составляет 35–44 нмоль/л; это безумно малая величина — миллиардная доля литра.

Коротко говоря, свободных ионов водорода в организме практически нет. Тем не менее колебания кислотно-щелочного баланса регистрируются высокочувствительными рецепторами, расположенными в стволе головного мозга в месте его перехода в спинной мозг, в магистральных сосудах, непосредственно связанных с сердцем, и в сонных артериях на шее. Если число ионов водорода повышается, то одновременно снижается значение pH и активируются буферные системы, которые связывают ионы водорода. Это связывание может происходить в легких, почках и крови. Почки готовы выводить из организма ионы водорода, образующиеся в ходе рутинного обмена веществ. В связи с этим понятно, что кислотная нагрузка на почки зависит от пищевых предпочтений и типа питания. Но разнообразного рациона с умеренным содержанием белка при достаточном употреблении овощей, фруктов и салатов, богатых основаниями, достаточно для того, чтобы предупредить повышение концентрации ионов водорода в организме. Специальные диеты, разгрузочные дни, интервальное питание, лечебное голодание в принципе не нужны, если нет заболеваний почек.

В условиях высокогорья в результате недостатка кислорода происходит стимуляция дыхания — за счет ствола головного мозга. Расположенные там регулирующие центры повышают частоту дыхательных движений и увеличивают глубину дыхания. Это приводит к тому, что из легких выводится больше углекислого газа и повышается pH крови. В почках это усиливает выведение бикарбоната, что позволяет восстановить нормальный pH. Совершенно ясно, что при пребывании на большой высоте в действие приводятся механизмы, обеспечивающие сложную перестройку организма. Таким образом, организму надо дать время на приспособление к высоте, а не быстро подниматься вверх.

Вероятно, самый известный способ адаптации к большой высоте представляет собой образование красных кровяных клеток, эритроцитов, под влиянием эритропоэтина, больше известного под аббревиатурой ЭПО. При недостатке кислорода увеличение выработки этого гормона происходит в специализированных клетках почек и в меньшей степени печени. В организме он выполняет и другие функции, которые пока не вполне понятны. Так, некоторые исследования показывают, что головной мозг повышает выработку эритропоэтина при значительных умственных усилиях и возбуждает нервные клетки, способствуя образованию между ними прочных связей. Однако широкую известность ЭПО приобрел как вещество, которое нелегально применяют в спорте для улучшения результатов. Такого рода допинг усиливает кроветворение в костном мозге. Это приводит к повышению содержания эритроцитов в крови и гемоглобина в эритроцитах и, в свою очередь, к усилению способности крови к транспорту кислорода и к улучшению результатов в видах спорта, требующих выносливости. Впрочем, тренировки в условиях высокогорья, которые сами по себе естественным путем вызывают повышение продукции ЭПО, разрешены.

О том, что такой гормон должен существовать, ученые начали догадываться уже сто лет назад. Но только в последние десятилетия удалось наконец расшифровать последовательность гена ЭПО. Трудность заключалась в том, что, в отличие от других гормонов, эритропоэтин не запасается, а синтезируется только по потребности, то есть при гипоксии. Только после того, как была расшифрована аминокислотная последовательность ЭПО, а его ген был выделен и клонирован, в восьмидесятых годах начали стремительно развиваться исследования гормона и клиническое его использование. Только двумя годами позднее, с помощью рекомбинантных технологий, удалось создать синтетический гормон и приступить к его промышленному производству под названием «Эпоэтин». Сегодня этот гормон находит полезное применение во многих областях клинической медицины. Так, его получают пациенты, у которых на фоне химиотерапии подавляется кроветворение; такое лечение приводит к повышению их шансов на выживание и улучшает состояние и самочувствие.

Что касается насыщения гемоглобина кислородом, то для его определения существуют специализированные рецепторы в сонных артериях, так называемые каротидные тельца. Если уровень насыщения падает, то за счет стимуляции этих сенсоров происходит увеличение глубины и частоты дыхания, частоты сердечных сокращений и минутный объем крови. Усиление дыхания называют гипоксическим вентиляционным ответом (ГВО). Это важный параметр, позволяющий судить о степени адаптации к высоте — мы вернемся к нему, когда будем обсуждать особые механизмы адаптации к большой высоте у жителей Тибета и Анд.

На уровне моря парциального давления кислорода, о котором уже говорилось в начале главы, достаточно для стопроцентного насыщения гемоглобина кислородом. У здоровых людей такое насыщение может поддерживаться до высоты 4000 м. При более длительном периоде приспособления и на фоне форсированного дыхания такой уровень насыщения достижим до высоты 7000 м, но процесс адаптации продолжается много недель и не приводит к полному приспособлению. Полная адаптация происходит только до высоты 5300 м. Если неподготовленного человека быстро поднять на высоту 7000 м, то через четверть часа он потеряет сознание. На высотах от 7000 до 12 000 м люди могут выживать только за счет форсированного дыхания чистым кислородом. При этом вентиляция чистым кислородом допустима только ограниченное время — порядка двух часов, после этого она становится токсичной, так как в организме образуется большое количество кислородных радикалов, которые среди прочего вызывают повреждение клеточных мембран.

Даже такие экстремальные альпинисты, как Райнхольд Месснер и Петер Хабелер, лишь короткое время могли обходиться без дополнительного кислорода на последних метрах до вершины Эвереста, на высоте 8848 м. Свыше 14 000 м людям требуются герметичные кабины самолетов, где поддерживается нормальное давление воздуха, чтобы пребывание на такой высоте вообще было возможным. Что касается индивидуальной работоспособности на больших высотах, то она варьируется в очень широком диапазоне. Так, в одном полевом исследовании, проведенном в США на пике Пайкс (высота 4325 м), было показано, что максимальное поглощение кислорода у некоторых испытуемых снижалось всего на 8 %, а у других — на все 50 %.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.