20 мая 2024, понедельник, 21:50
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Энергетика сегодня и завтра. Фрагмент из книги «Цифры не лгут»

Издательства «КоЛибри» и «Азбука-Аттикус» представляют книгу Вацлава Смила «Цифры не лгут. 71 факт, важный для понимания всего на свете» (перевод Юрия Гольдберга).

Канадский ученый, эколог и политолог Вацлав Смил знаменит своими работами о связи энергетики с экологией, демографией и реальной политикой, а также виртуозным умением обращаться с большими массивами статистических данных. Эта книга, так восхитившая Билла Гейтса, обобщает самые интересные материалы, которые Смил пишет для журнала IEEE Spectrum — одного из ведущих научно-инженерных изданий мира, и представляет собой актуальное руководство для понимания истинного положения дел на нашей планете. Она затрагивает широкий диапазон тем, касающихся людей, целых народов и стран, энергии и того, как мы ее используем, технических инноваций, а также машин и устройств, определяющих облик современной цивилизации. Насущная и важная, сочетающая статистику и историю, написанная с чувством юмора, эта книга побуждает нас усомниться в том, что мы считали истиной.

Предлагаем прочитать два раздела из книги.

 

Солнечный свет: всё еще вне конкуренции

Прогресс цивилизации можно проследить по уровню освещения — в первую очередь по его мощности, стоимости и светоотдаче. Последний показатель отражает способность источника света вызывать значимую реакцию в глазу и вычисляется как общий световой поток (в люменах), деленный на номинальную мощность (в ваттах).

В фотопических условиях (то есть при ярком освещении, позволяющем различать цвета) светоотдача видимого света достигает пика на величине 683 лм/Вт — это максимум для волны длиной 555 нанометров (нм), которая находится в зеленой части спектра, и этот цвет при любом уровне мощности кажется самым ярким.

На протяжении многих тысячелетий наши источники искусственного освещения отставали от этого теоретического максимума на три порядка. Свечи имеют светоотдачу всего от 0,2 до 0,3 лм/Вт, фонари со светильным газом (освещавшие европейские города в XIX в.) — в 5–6 раз больше, а эффективность угольных нитей первых лампочек Эдисона оставалась примерно на том же уровне. Светоотдача резко увеличилась с появлением металлических нитей из осмия (1898; 5,5 лм/Вт) и тантала (1901; 7 лм/Вт); по прошествии еще десяти лет вольфрамовая нить в колбе, наполненной смесью азота и аргона, повысила светоотдачу обычных бытовых ламп до 12 лм/Вт, а витая вольфрамовая нить, появившаяся в 1934 г., довела ее до 15 лм/Вт для 100-ваттных ламп, которые стали стандартным источником яркого света в первые два десятилетия после Второй мировой войны.

Источник: © В. Смил «Цифры не лгут. 71 факт, важный для понимания всего на свете». Изображение предоставила Издательская группа «Азбука-Аттикус»

Источники света с другим принципом действия — лампы низкого давления, натриевые и ртутные (флуоресцентные) — появились в 1930-х гг., но широкое распространение получили только в 1950-х. Лучшие современные флуоресцентные лампы с электронным балластом имеют светоотдачу на уровне 100 лм/Вт; натриевые лампы высокого давления — до 150 лм/Вт; натриевые лампы низкого давления — до 200 лм/Вт. Однако натриевые лампы излучают только монохроматический желтый свет с длиной волны 589 нм, и поэтому их не используют в помещениях: они пригодны лишь для освещения улиц.

Сегодня все наши надежды связаны со светодиодами.

Светодиоды были изобретены в 1962 г. и на тот момент излучали только красный свет, через десять лет появились зеленые, а в 1990-х гг. — синие светодиоды повышенной яркости.

Покрывая такие синие светодиоды флуоресцентными люминофорами, инженеры смогли преобразовать часть синего света в более теплые тона и таким образом получить белый свет, пригодный для внутреннего освещения. Теоретический предел для яркого белого светодиода составляет около 300 лм/Вт, но современным бытовым лампам до него еще очень далеко. Компания Philips продает в Соединенных Штатах — стандарт сетевого напряжения здесь 120 вольт (В) — 18-ваттные лампы мягкого белого света и лампы регулируемой мощности (замена 100-ваттных ламп накаливания) со светоотдачей 89 лм/Вт. В Европе, где напряжение сети находится в диапазоне от 220 до 240 В, Philips предлагает светодиодные лампы со светоотдачей 172 лм/Вт (замена европейских 1,5-метровых флуоресцентных труб).

Высокая эффективность светодиодов уже привела к существенной экономии электричества во всем мире; кроме того, такие лампы способны работать по три часа в день в течение двадцати лет, а если вы забыли выключить свет в доме, это почти не отразится в счете за электроэнергию. Однако, как и все остальные источники искусственного освещения, они не обеспечивают спектр излучения, сравнимый с естественным. Лампы накаливания дают слишком мало синего света, а флуоресцентные почти не излучают красного; у светодиодов недостаточная интенсивность в красной части спектра и избыточная — в синей. Их свет не слишком приятен для глаза.

С 1880-х гг. светоотдача искусственных источников света увеличилась на два порядка, но мы по-прежнему не умеем воспроизводить в помещении солнечный свет.

Аккумуляторы всё большей емкости: зачем?

Было бы гораздо легче расширить использование энергии солнца и ветра, если бы мы обладали более совершенными способами хранения большого количества электроэнергии, чтобы скомпенсировать прерывания в ее потоке.

Даже в солнечном Лос-Анджелесе стандартный дом с установленными на крыше фотовольтаическими панелями, которые обеспечивают его потребности, всё равно столкнется с серьезной дневной нехваткой до 80 % в январе и дневным переизбытком на 65 % в мае. Такой дом можно отключить от сети электроснабжения, только если установить громоздкий и дорогой комплект литий-ионных аккумуляторов. Даже маленькая национальная сеть электроснабжения — мощностью от 10 до 30 ГВт — может полагаться на непостоянные источники только при наличии хранилища электроэнергии мощностью в несколько гигаватт, способного обеспечить несколько часов непрерывной работы.

С 2007 г. больше половины населения нашей планеты живет в городах. К 2050 г. численность горожан превысит 6,3 млрд человек и составит две трети всего населения, причем значительно увеличится количество городов-гигантов с населением больше 10 млн человек (см. главу «Расцвет городов-гигантов»). По большей части эти люди будут жить в высотных зданиях, и поэтому возможности для локальной генерации электроэнергии будут ограниченны, но им понадобится бесперебойное поступление электричества для нужд домов, услуг, промышленных предприятий и транспорта.

Представьте азиатский город-гигант, в котором пару дней бушует тайфун. Даже если магистральные линии электропередачи способны обеспечить более половины потребностей города, потребуется еще немало гигаватт-часов из хранилища, пока не будут восстановлены источники с непостоянной генерацией (или, возможно, придется подключить резервные мощности, произведенные на ископаемом топливе, — те самые, от которых мы стремимся избавиться).

Литий-ионные аккумуляторы используются для накопления энергии как в стационарном, так и в мобильном варианте. В качестве анода в них применяется литиевый сплав, а в качестве катода — графит (в обычных свинцово-кислотных автомобильных аккумуляторах активными веществами электродов становятся двуокись свинца и свинец). Но, несмотря на гораздо более высокую энергоемкость, литий-ионные аккумуляторы всё же не годятся для долговременного хранения больших запасов энергии. Самая большая накопительная система, состоящая из 18 000 литий-ионных аккумуляторов, строится в Лонг-Бич компанией AES Corp. для компании Southern California Edison. После ввода в строй в 2021 г. хранилище должно поддерживать мощность 100 МВт в течение четырех часов. Но 400 МВт·ч электроэнергии — это всё еще на два порядка меньше, чем потребуется крупному азиатскому городу, если он лишится источников с непостоянной генерацией.

Источник: © В. Смил «Цифры не лгут. 71 факт, важный для понимания всего на свете». Изображение предоставила Издательская группа «Азбука-Аттикус»

Итак, мы должны многократно увеличить объемы хранения: Но как? Энергоэффективность натрий-серных аккумуляторов выше, чем у литий-ионных, но горячий жидкий металл очень неудобен в качестве электролита. Проточные батареи, которые запасают энергию непосредственно в электролите, всё еще находятся на стадии внедрения. Суперконденсаторы не способны поставлять энергию в течение достаточно долгого времени. А сжатый воздух и маховики — извечные любимчики популярной журналистики — были реализованы лишь в десятке небольших или средних проектов. Вероятно, в долговременном плане наши надежды будут связаны с дешевым электричеством, получаемым из солнечной энергии: с ним мы разложим воду при помощи электролиза и используем полученный водород в качестве универсального топлива, — однако перспективы такой водородной энергетики пока туманны.

Таким образом, для масштабного хранения энергии нам по-прежнему приходится рассчитывать на технологию, появившуюся в 1890-х гг.: водохранилище с насосным питанием. Вы строите один резервуар на возвышенности и трубами соединяете его с другим, расположенным ниже, а затем используете более дешевое электричество, ночью перекачивая насосами воду наверх, чтобы она вращала турбины в периоды пиковых нагрузок. На гидроаккумуляцию приходится 99 % мирового объема хранилищ электроэнергии, но при этом приходится мириться с неизбежными потерями порядка 25 %. Многие такие хранилища обеспечивают мощность 1 ГВт — максимум до 3 ГВт — в течение недолгого времени, но для мегаполиса, полностью зависящего от солнечной и ветровой генерации, потребуется несколько подобных сооружений. Однако большинство городов-гигантов расположены вдали от крутых склонов или глубоких горных долин, которые нужны для гидроаккумуляции. Многие — в том числе Шанхай, Калькутта и Карачи — находятся на прибрежных равнинах. Гидроаккумуляция для них возможна только при условии передачи электроэнергии на дальние расстояния.

Необходимость в более компактных, более гибких, масштабных и дешевых хранилищах электрической энергии самоочевидна. Но чудо к нам не торопится.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.