21 мая 2024, вторник, 00:39
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Наука и кулинария: Физика еды

Наука и кулинария
Наука и кулинария

Издательства «КоЛибри» и «Азбука-Аттикус» представляют книгу Майкла Бреннера, Пиа Cёренсен и Дэвида Вейтца «Наука и кулинария: Физика еды. От повседневной до высокой кухни» (перевод Екатерины Черезовой).

«На протяжении истории множество удивительных открытий было сделано учеными, работавшими с продуктами, и поварами, использовавшими научный подход. Николя Аппер, французский кондитер и химик, в начале XIX века стал изобретателем процесса консервации, нового способа безопасного хранения продуктов. Технология пастеризации, предложенная микробиологом Луи Пастером, произвела революцию в пищевой промышленности — и, вероятно, спасла за время своего существования миллионы жизней. В этой книге мы рассматриваем еду как науку, но еда — это также история, культура, дипломатия, национальная безопасность и еще очень и очень многое. Общество станет сильнее, если мы будем лучше понимать, откуда берется еда и насколько сильно это влияет на окружающий мир. Вот почему эта книга — и гарвардский курс, на котором она основана, — является столь значимым ресурсом. Интересная для всех, а не только для изучающих точные науки, она поможет читателям установить связи и создать системную картину увлекательного мира еды», — говорит в предисловии к книге известный шеф-повар Хосе Андрес.

Предлагаем прочитать фрагмент книги.

 

Смешать то, что не смешивается

В кулинарии одна из главных проблем — и радостей — это смешивание ингредиентов. Порой смешивание бывает приятно простым: стакан воды может принять много сахара, и для его растворения особых усилий прилагать не придется. Но некоторые сочетания продуктов доставляют больше хлопот. Скажем, вы хотите приготовить салатную заправку, соус винегрет, но два основных ее ингредиента — уксус и растительное масло — естественным образом не смешиваются. Уксус — это в основном вода, так что, как бы вы ни трясли бутылочку с маслом и уксусом, стоит смеси немного постоять — и уксус с маслом разделятся. Можно заправить салат и быстренько его съесть — или попробовать смешать винегрет в миксере на высокой скорости. Увы, взбивание не поможет: вы заметите, что уксус и масло всё равно разделятся, хотя и не так быстро. И тем не менее однажды происходит нечто магическое: вы решаете сделать винегрет чуть острее, добавив к маслу и уксусу немного горчицы. Вы встряхиваете бутылочку, а потом обнаруживаете, что смесь держится намного лучше. Почему?

Научные принципы уже должны быть вам знакомы: вода любит общество других молекул воды, причем настолько, что эти молекулы стремятся оказаться как можно дальше от молекул растительного масла. Аналогично молекулы масла предпочитают находиться рядом с другими молекулами масла. Если воду и растительное масло поместить в общую емкость, молекулам будет комфортнее всего расположиться двумя раздельными слоями: масло сверху (поскольку оно менее плотное), а вода внизу. Такие жидкости, неспособные растворяться друг в друге, называются несмешивающимися.

Поскольку растительное масло гидрофобно, оно не смешивается с водой. На молекулярном уровне невозможно смешать масло и воду. Капельки одной жидкости (масла) оказываются заключены в другой (воде). Однако такая смесь все равно нестабильна, потому что в ней слишком много поверхностей, где вода и масло соприкасаются. По мере того как капельки растительного масла всплывают вверх, они сливаются друг с другом. В конце концов две жидкости полностью разделятся, так что у них будет всего одна контактная поверхность. Но почему добавление горчицы помогает? Дело вот в чем: горчица создает буфер между маслом и водой. Это не дает мелким капелькам сливаться в одну большую, стабилизирует капельки и позволяет использовать заправку тогда, когда вам захочется. Стабилизация происходит потому, что молекулы, из которых состоит горчица, амфифильны: одна половина каждой молекулы гидрофильна и предпочитает находиться в воде, а другая — гидрофобна и любит масло. Амфифильные молекулы, такие как молекулы горчицы, называются поверхностно-активными. Вот почему горчица решает нашу проблему: когда мы смешиваем уксус и растительное масло, чтобы приготовить салатную заправку, мы формируем капельки масла в уксусе. Чем сильнее мы встряхиваем смесь, тем мельче становятся капельки. Если мы посмотрим на самый край любой капельки под микроскопом, то увидим миниатюрную версию тех же разделенных слоев, которые получили бы без смешивания. Молекулы горчицы устраиваются на этой контактной поверхности. Они ориентированы таким образом, чтобы каждый конец молекулы соприкасался с той жидкостью, которую он предпочитает — либо с маслом, либо с водой, — и становятся своего рода посредником, стабилизирующим капельки. Нашему взгляду представляется, что ингредиенты смешаны, хотя на микроскопическом уровне настоящего смешения нет. Такое состояние вещества, когда капельки одной жидкости заключены во вторую жидкость, мы называем эмульсией. Капельки достаточно малы, чтобы во время еды нам казалось, будто жидкости смешаны. На самом же деле смесь двух жидкостей, образующих эмульсию, дает иные — и часто очень приятные — текстуру и вкус.

В этой главе мы сосредоточимся на том, как работают эмульсии: как мы их готовим? Как они образуются? И конечно же, как мы можем использовать эмульсии, чтобы приготовить поистине поразительные блюда?

 

Рисунок 1. Эмульсия состоит из капель одной жидкости (дисперсная фаза) в другой жидкости (постоянная фаза). Когда дисперсная фаза — это растительное масло, перед нами масляно-водная эмульсия.

Кап, кап… всюду капли

Примеров эмульсий в кулинарии множество: салатная заправка, голландский соус и майонез лишь несколько самых простых вариантов. Каждая из этих эмульсий представляет собой образованную двумя жидкостями смесь, текстура которой кардинально отличается от того, что мы почувствовали бы, если бы попробовали эти продукты по отдельности. Жидкость внутри капель мы называем дисперсной фазой, а жидкость, окружающую капли, — постоянной фазой. Даже такие продукты, как тесто для печенья или мясной хлеб, — это эмульсии, хотя присутствие двух жидкостей не так очевидно: в этих случаях дисперсная фаза по-прежнему жидкость, а вот постоянная фаза ближе к гелю или твердому веществу.

Однако давайте вернемся к простому соусу винегрет из оливкового масла и уксуса. Если у вас есть под рукой растительное масло и уксус, можете налить того и другого в бутылочку с хорошей пробкой и последовать нашему примеру. Классический способ — встряхнуть бутылку, а потом заправить салат. Так в уксусе формируются крошечные капельки масла. Образование эмульсии можно определить по тому, что смесь перестает быть прозрачной: мелкие капли не дают проходить свету так, как в чистой воде или чистом масле. Чтобы получить эмульсию, можно использовать все, что позволит смешать две фазы: бутылочку, которую можно трясти, венчик, блендер, даже пестик со ступкой — сгодится все. Главное — создать капли одной фазы внутри другой. Слабое встряхивание дает крупные капли, более энергичное и длительное — гораздо более мелкие. Однако в обоих случаях капли растительного масла со временем всплывут, сольются и образуют отдельный слой; крупные капли разделятся быстро, а мелким понадобится немного больше времени.

Создать капли — это одно дело, а вот сохранить их в дисперсной фазе — совсем другое. Как показал нам опыт с растительным маслом и уксусом, эмульсия может оказаться очень неустойчивой: неправильное взбалтывание или неправильные условия могут разрушить эмульсию, и две жидкости разделятся.

 

Рисунок 2. Хотя майонез кажется непрозрачным, мельчайшие капельки масла можно увидеть в микроскоп. В майонезе на этом снимке капельки масла имеют диаметр от 2 до 20 микрометров, то есть менее чем от 1/10 до 1/2 толщины человеческого волоса.

Давайте рассмотрим несколько жизненных примеров, чтобы показать, почему эмульсии разделяются. Две жидкости реально не любят друг друга, так что можно представить их себе как «Локомотив» против «Спартака». Собаки против кошек. «Реал Мадрид» против «Барселоны». Как болельщики команд-противников садятся в разных секторах стадиона, так и молекулы двух жидкостей стремятся собраться в разных частях бутылочки, одна — сверху, а вторая — снизу. Тем самым они сводят к минимуму площадь поверхности, на которой им приходится соприкасаться. Представьте это себе так: если бы каждый болельщик «Локомотива» сел рядом с болельщиком «Спартака», всюду начались бы споры и драки. А вот если посадить всех фанатов «Локомотива» в одном секторе, а фанатов «Спартака» — в другом, риск конфликтов сохранится только на границе двух секторов. Мы свели к минимуму площадь поверхности, на которой им приходится взаимодействовать. Даже если у нас не выйдет идеального разделения на две части, все равно будет лучше, если удастся создать несколько небольших подсекций болельщиков двух команд. Площадь контактной поверхности все равно окажется меньше, чем если бы они полностью перемешались.

То же относится и к каплям в эмульсии. Если вы перемешаете эмульсию очень сильно, создав много мелких капелек, тогда — если их нечему остановить — они сольются друг с другом в капли побольше. Группы болельщиков «Спартака» на стадионе предпочтут праздновать вместе и держаться подальше от «паровозов», и наоборот. А в эмульсии из капелек растительного масла в воде более легкие капли масла будут всплывать к поверхности, а более тяжелые капли воды — опускаться ко дну. По дороге, если две капли одного вещества столкнутся друг с другом, они смогут слиться, образовав каплю покрупнее, — это называется коалесценцией. Коалесценция может быть очень быстрым процессом (скажем, две капли растительного масла в уксусе сливаются всего за несколько тысячных секунды). Даже если капли масла не столкнулись с другими на своем пути наверх, то, оказавшись на поверхности, они неизбежно начнут соприкасаться с соседними, так как вода будет стремиться вниз. Таким образом, процесс коалесценции будет повторяться снова и снова, пока две жидкости полностью не разделятся.

 

Рисунок 3. Оливковое масло и бальзамический уксус сами по себе разделятся на два слоя: масло — наверху, а уксус — внизу (вверху слева). Если смесь потрясти, два слоя смешаются и образуют гомогенный раствор (вверху справа). Однако относительно быстро две жидкости снова начнут разделяться: на снимке слева внизу показана заправка через 20 минут после встряхивания, когда мелкие капли слились в более крупные, видимые невооруженным глазом. И наконец, на снимке справа внизу, сделанном через 1 час после встряхивания, масло и уксус уже почти полностью разделились.

 

Рисунок 4. Эмульсии разделяются на два слоя из-за слияния отдельных капелек в более крупные. Когда отдельные капельки находятся далеко друг от друга, они имеют сферическую форму. Сталкиваясь друг с другом, молекулы двух капелек начинают образовывать перемычку, которая в итоге приведет к слиянию. Переходная форма в виде гантели нестабильна, но молекулы ненадолго принимают ее, чтобы слиться в более крупную каплю, общая площадь поверхности которой будет меньше, чем у двух более мелких.

Как нам предотвратить эти слияния капелек? Если продолжить спортивную аналогию, мы не в состоянии заставить болельщиков «Локомотива» полюбить болельщиков «Спартака». Это просто невозможно. Единственный способ помешать болельщикам двух команд выискивать себе подобных — это создать между ними некий физический барьер, чтобы их не слишком смущало пребывание рядом друг с другом. Точно так же мы не можем заставить воду и растительное масло полюбить друг друга, но можем создать молекулярный разделитель, который помешает каплям сливаться. Представьте себе любителя футбола, которого не слишком интересуют «Локомотив» и «Спартак». Может, он вообще вырос за границей и сейчас здесь в отпуске. Ему могут нравиться обе команды, и он вполне нормально себя чувствует рядом с фанатами обеих. И что важно, если он будет сидеть между болельщиками команд-противников, его присутствие не даст им начать драку друг с другом. На самом деле болельщики рядом с ним могут быть вполне довольны его обществом и потому вряд ли станут пытаться найти своих друзей.

Молекулярный эквивалент такого человека называется эмульгатором, или поверхностно-активным веществом. Поверхностно-активное вещество устраивается на разделе двух фаз. Оно обволакивает капельки и тем самым заслоняет их друг от друга и предотвращает их слияние. Оболочки горчичных зерен содержат молекулы с такими свойствами, поэтому горчица стабилизирует соус винегрет. А вот соль и перец не являются поверхностно-активными веществами и не влияют на стабильность эмульсии. Чтобы подробнее поговорить об эмульгаторах, перейдем ко врезке.

Эмульгаторы

 

Эмульгаторы (поверхностно-активные вещества) располагаются на границе между маслом и водой с четкой ориентацией: гидрофобные «хвосты» находятся в масле, а гидрофильные «головы» — в воде. Их главное назначение в том, чтобы обволакивать поверхности капелек масла и воды, тем самым увеличивая стабильность. Если эмульгатора в эмульсии слишком много и поверхностей для обволакивания не остается, лишние молекулы образуют собственные капельки. Они называются мицеллами и могут быть развернуты в любую сторону, в зависимости от того, которая фаза является постоянной: масло или вода. На картинке гидрофобные, любящие масло «хвосты» повернуты к центру мицелл, чтобы не контактировать с водой. Молекулы поверхностно-активного вещества постоянно курсируют между поверхностями капель и мицеллами, но общее количество молекул на поверхности соприкосновения в любой момент времени остается одним и тем же.

Эмульгаторы имеют различную форму, и это делает их более или менее подходящими для различных типов эмульсий. Например, если любящие воду «головы» шире «хвостов», поверхность станет изгибаться из-за скопления «голов». Такой тип эмульгатора предпочтителен для эмульсий масло-в-воде, где «головы» эмульгатора окажутся вне капелек. Наоборот, если «хвост» шире «головы», поверхность станет изгибаться «хвостами» наружу, что предпочтительно для эмульсий вода-в-масле, где «хвосты» располагаются снаружи капель.

Типы эмульгаторов

Возможно, вы удивитесь, узнав, что молекулярные медиаторы очень распространены, хотя механизмы их действия бывают различными. Эмульгаторы исходно присутствуют в самых разных кулинарных ингредиентах: чесноке, горчице, крахмале и множестве других. Говоря обобщенно, причина существования природных эмульгаторов в том, что у многих молекул в биологии есть причины быть как гидрофобными, так и гидрофильными. Вспомните, например, наш разговор в главе 3 о роли этих свойств в сворачивании белков. Чтобы показать разнообразие ингредиентов, действующих как стабилизаторы, давайте рассмотрим способы их работы.

Фосфолипиды

Фосфолипиды — это молекулы, образующие клеточные мембраны у нас в организме. Клеточные мембраны должны отделять содержимое клетки от того, что находится вне ее, и делают они это благодаря тому, что имеют молекулы с гидрофильной головной частью и гидрофобным «хвостом». В клетках эти молекулы формируют двухслойную структуру, где гидрофобные части молекул разворачиваются к гидрофобным частям других молекул. Это немного похоже на застежку-липучку, где каждый из сцепляющихся листков состоит из одного слоя молекул и соединяется с другим слоем, ориентированным в противоположную сторону. Те же молекулы, что образуют мембраны в клетках, могут также служить эмульгаторами при добавлении в смеси воды и растительного масла. Распространенный эмульгатор, работающий таким образом, — это лецитин, который содержится в яичном желтке и различных растениях, например сое. Растворив немного соевого лецитина в уксусе перед тем, как смешать его с маслом, мы можем получить более стабильный винегрет.

 

Рисунок 5. Строение лецитина — часто используемого эмульгатора в домашних условиях и в высокой кухне. Как и все эмульгаторы, лецитин обладает гидрофильной головной частью (ей нравится находиться в воде) и гидрофобным «хвостом» (он терпеть не может воду и любит находиться в масле). Эти свойства позволяют ему удобно располагаться на поверхности капель эмульсии.

Мелкие твердые частицы и белки

Помимо добавления амфифильных молекул, есть еще два способа стабилизировать поверхность соприкосновения воды и масла. Первый: добавить твердые частицы. Подобно молекулярным эмульгаторам, частицы располагаются на поверхностях соприкосновения воды и масла. Они могут это делать потому, что — как наш приезжий любитель футбола — в буквальном смысле нейтральны: готовы соприкасаться с обеими жидкостями, причем одновременно. Поскольку такие стабилизаторы гораздо крупнее молекулярных эмульгаторов, их гораздо труднее оторвать от поверхности капель и потому они очень эффективны, в целом намного превосходят молекулярные эмульгаторы. В качестве примеров из области кулинарии можно назвать зерна крахмала, полисахариды (такие как пектин), шарики жира и даже клетки дрожжей.

 

Рисунок 6. Частицы (зеленые) гораздо крупнее отдельных молекул растительного масла и воды и потому могут становится для капелек чем-то вроде доспехов. Для нужного эффекта частицы должны покрывать всю поверхность капель, потому что иначе при столкновении капель жидкости все равно смогут соприкоснуться и слиться.

Белки дают еще один способ стабилизировать границу между водой и растительным маслом. Вспомним: в белках есть элементы как гидрофобные, так и гидрофильные, и свернутый белок прячет свою гидрофобную часть от воды. Таким образом, белки способны работать как эмульгаторы обоих видов: в свернутом виде они действуют как частицы, а при разворачивании гидрофобные и гидрофильные части могут разделяться и ориентироваться на границе раздела в соответствии со своими предпочтениями.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.