20 мая 2024, понедельник, 20:53
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Новый путь к водородному топливу

МФТИ

Водород – один из лучших альтернативных источников энергии. При его сгорании образуется водяной пар, так что он не вредит экологической обстановке. Кроме того, коэффициент полезного действия водородного топлива (> 45%), что гораздо выше, чем у бензинового или дизельного (< 35%). Крупные автомобильные компании, такие как, например, Toyota, Honda и BMW, уже производят автомобили на водородном топливе, однако в ограниченных масштабах. Производство водорода все еще является затратным, в том числе и по электроэнергии. Поэтому ученые ищут способ получения водорода с помощью другого энергетического источника.

Исследовательская группа из США при участии ученых из Московского физико-технического института собрала нанобиоконструкцию, которая под действием света производит водород из воды. Специалисты синтезировали нанодиски – круглые кусочки мембраны, состоящие из двойного слоя липидов – со встроенным светочувствительным белком и соединили их с частицами фотокатализатора оксида титана TiO2. Результаты опубликованы в журнале ACS Nano, кратко о них рассказывается в пресс-релизе МФТИ.

Берем от природы

Водород можно получить из воды с помощью солнечной энергии. Для этого необходимо присутствие специального вещества – фотокатализатора. Наиболее распространенным фотокатализатором является TiO2. Сам по себе он недостаточно эффективен, поэтому ученые придумывают разные ухищрения: добавляют примеси, измельчают фотокатализатор до наночастиц и т. д. В Аргоннской национальной лаборатории (США) исследователи обратились к биологии и собрали наноконструкцию из TiO2 и белка бактериородопсина. Эти светочувствительные компоненты усиливают действие друг друга и образуют новую систему, функциональность которой намного превосходит набор свойств всех ее частей.

Бактериородопсин – светочувствительный белок, находящийся в мембране некоторых бактерий. (Вообще таких белков достаточно много, в данном случае использовался белок бактерии Halobacterium salinarium). Одна часть белка выходит наружу клетки, а другая — внутрь клетки. Под действием солнечного света бактериородопсин начинает качать протоны из клетки в окружающую среду, что обеспечивает производство энергии в бактериальной клетке в виде АТФ. Заметим, что человек в сутки синтезирует около 70 кг АТФ.

Н+ протон. АТФ молекула энергии. АТФ-синтаза производит АТФ с помощью энергии протонов. Серым цветом обозначены липиды.

Нанодиски

Современные технологии позволяют синтезировать жизнь «в пробирке», без участия живых клеток. Для создания мембранных белков в искусственных условиях используют различные мембрано-моделирующие среды, в частности, нанодиски. Нанодиск – это кусочек мембраны, собранный из фосфолипидов и опоясанный двумя молекулами специального белка. Размер диска зависит от длины этих белковых ремней. Мембранный белок, каковым является бактериородопсин, будет «чувствовать» себя в нанодиске как дома, в родной мембране, и сохранять свою естественную структуру. Эти чудо-конструкции используются для изучения структуры мембранных белков, для разработки лекарственных форм, и вот теперь их приспособили для фотокатализа. С помощью экспертов из МФТИ исследователи получили нанодиски диаметром 10 нанометров со встроенным бактериородопсином.

Липидный нанодиск. Илл.: МФТИ

Профессор МФТИ, доктор химических наук и руководитель лаборатории химии и физики липидов Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ Владимир Чупин замечает: «Наши лаборатории, которые занимаются мембранными белками и, в частности, нанодисками, в основном ориентированы на биофизические, медицинские проблемы. Но вот недавняя работа с нашими американскими коллегами показывает, что если соединить биологические и технические материалы, нанодиски можно использовать и для выделения водородного топлива».

Получился водород

Нанодиски замешивали в водном растворе вместе с частицами TiO2 с платиновыми вкраплениями для большего эффекта (не для роскоши, а для фотокатализа). За ночь они сами прикрепились друг к другу. В данном случае бактериородопсин выполнял несколько функций. Во-первых, он был антенной, которая собирает свет и передает энергию TiO2, усиливая его фоточувствительность. Во-вторых, он переносил протоны, которые восстанавливались до водорода посредством платинового катализатора. Так как на восстановление затрачиваются электроны, ученые добавили в воду немного метилового спирта в качестве источника электронов. Смесь сначала поместили под зеленый свет, а потом — под белый. Во втором случае водорода получилось примерно в 74 раза больше. В среднем почти постоянное выделение водорода наблюдалось по меньшей мере 2–3 часа.

Раньше уже проводились опыты с подобной конструкцией, но там использовали натуральный бактериородопсин в натуральной мембране. Нанодиски попробовали впервые, и оказалось, что при их применении водорода выделяется столько же или даже больше, но при этом на такое же количество частиц TiO2 требуется меньше бактериородопсина. Ученые предположили, что это связано с тем, что нанодиски строго одинаковые по размеру и компактные, что позволяет им образовать больше связок. Хотя сейчас дешевле использовать натуральный бактериородопсин, возможно, развивающиеся методы синтеза жизни «в пробирке» вскоре сделают применение нанодисков более целесообразным.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.